Matching: Product Label \& Certificate of Analysis

Product labeling is the primary way a processor or product formulator communicates with a consumer. In the hemp industry the most visible item on a label is the amount of CBD in that product. A Certificate of Analysis (COA) obtained by a third-party independent lab, such as ECC Test Lab, provides the processor and, in turn, the consumer with assurance that what Is written on a product label accurately represents the concentration of the CBD in that product.

A challenge arises for the consumer when comparing the CBD concentration on a product label to what is written on a COA. Why is this so confusing?

- Different units of measurement are used on the product versus on the COA (mg, g, mL, fl. oz, etc)
- The amount of CBD is sometimes referring to the TOTAL amount in a bottle or package. And sometimes it's referring to how much CBD is in ONE dose.
- Dosing sizes can vary -1 dropper full of a tincture, 2 gummies, 3 capsules before bed. Each of these can be a recommended dose, depending on the strength of the product.
- Lotions, salves and topicals usually don't have a recommended dose, and sometime they don't have a CBD concentration at all. (If there is not CBD concentration written on the label, check to make sure it's not a hemp seed oil product, rather than a CBD-infused product).

Examples below show a LABELED PRODUCT and a CANNBINOID POTENCY TABLE from a matching COA:

CANNABINOID POTENCY					$\begin{array}{r}\text { Two Co } \\ \text { Concentration (mg) } \\ \hline\end{array}$
ANALYTE	$\begin{aligned} & \text { LOD } \\ & (\mathrm{mg} / \mathrm{g}) \end{aligned}$	$\begin{gathered} \mathrm{LOQ} \\ (\mathrm{mg} / \mathrm{g}) \end{gathered}$	Concentration (mg/g)	Concentration (\%)	
CBD	0.07	0.25	18.51	1.85	
CBDA	0.07	0.25	0.03	0.00	that cannabino
delta9-THC	0.07	0.25	0.51	0.05	
delta9-THCA	0.07	0.25	ND	ND	
CBG	0.07	0.25	0.35	0.04	Concentration (\%
CBGA	0.07	0.25	ND	ND	the product. THC
CBN	0.07	0.25	ND	ND	product This produ
CBC	0.07	0.25	0.94	0.09	
delta8-THC	0.07	0.25	ND	ND	
THCV	0.07	0.25	ND	ND	
TOTAL CBD			- 18.54	1.85	
TOTAL THC			0.51	0.05	

Total CBD $=C B D+0.877^{*} C B D A$ and Total $T H C=T H C+0.877^{*} T H C A$
The Measurement Uncertainty for Total THC at 0.3% is $+/-0.05 \%$ or in the range of $0.25 \%-0.35 \%$.

The bottle holds 30 mL .
That volume of OIL has an approximate mass of 27 g . ${ }^{\text {Note1 }}$ Using the TOTAL CBD on the COA, multiply the mass of the product by the concentration in mg / g : 27 g (product) $\times 18.54 \mathrm{mg} / \mathrm{g}=500 \mathrm{mg}$ CBD

Assuming a single dose is 1 mL (1 dropper full), the concentration per dose is determined by dividing the TOTAL amount of CBD in the bottle by the number of doses in the bottle (30). 500 mg CBD $/ 30 \mathrm{~mL}=16.6 \mathrm{mg} / \mathrm{mL}$

Two Concentrations on the Label:

500 mg CBD is the TOTAL amount of CBD in that bottle.
$16.6 \mathrm{mg} / \mathrm{mL}$ is the amount of CBD in 1 milliliter (mL). 0.05% Total THC.

Hempy Hemp Full Spectrum

CANNABINOID POTENCY							
ANALYTE	LOD $(\mathbf{m g} / \mathbf{g})$	LOQ $(\mathbf{m g} / \mathbf{g})$	Concentration $(\mathbf{m g} / \mathbf{g})$	Concentration $(\%)$			
CBD	0.07	0.25	37.54	3.75			
CBDA	0.07	0.25	ND	ND			
delta9-THC	0.07	0.25	1.10	0.11			
delta9-THCA	0.07	0.25	ND	ND			
CBG	0.07	0.25	1.85	0.19			
CBGA	0.07	0.25	ND	ND			
CBN	0.07	0.25	ND	ND			
CBC	0.07	0.25	2.07	0.21			
delta8-THC	0.07	0.25	ND	ND			
THCV	0.07	0.25	ND	ND			
TOTAL CBD							
TOTAL THC						$\mathbf{3 7 . 5 4}$	$\mathbf{3 . 7 5}$
$\mathbf{0}$							

Total $C B D=C B D+0.877^{*} C B D A$ and Total $T H C=T H C+0.877^{*} T H C A$
The Measurement Uncertainty for Total THC at 0.3% is $+/-0.05 \%$ or in the range of $0.25 \%-0.35 \%$.

500MG CBD
Hemp Supplement 0.5 FL. OZ. (15ML)

Assuming a single dose is 1 mL (1 dropper full), the concentration per dose is determined by dividing the TOTAL amount of CBD in the bottle by the number of doses in the bottle (15). 500 mg CBD $/ 15 \mathrm{~mL}=33.3 \mathrm{mg} / \mathrm{mL}$

There are 8 fluid ounces (fl oz) or 237 mL of LOTION in this bottle. The density of this LOTION is $0.99 \mathrm{~g} / \mathrm{mL}$. Multiply the density by the volume of LOTION in the bottle: 237 mL (lotion) $\mathbf{x} 0.99 \mathrm{~g} / \mathrm{mL}=234 \mathrm{~g}$ (lotion)

Using the TOTAL CBD on the COA, multiply the mass of the lotion by the concentration in mg / g : $234 \mathrm{~g} \times 1.28 \mathrm{mg} / \mathrm{g}=300 \mathrm{mg}$ CBD

CANNABINOID POTENCY				
ANALYTE	$\begin{gathered} \text { LOD } \\ (\mathrm{mg} / \mathrm{g}) \end{gathered}$	$\begin{gathered} \mathrm{LOQ} \\ (\mathrm{mg} / \mathrm{g}) \end{gathered}$	Concentration (mg / g)	Concenthation (\%)
CBD	0.07	0.25	1.28	0.13
CBDA	0.07	0.25	ND	ND
delta9-THC	0.07	0.25	ND	ND
delta9-THCA	0.07	0.25	ND	ND
CBG	0.07	0.25	ND	ND
CBGA	0.07	0.25	ND	ND
CBN	0.07	0.25	ND	ND
CBC	0.07	0.25	ND	ND
delta8-THC	0.07	0.25	ND	ND
THCV	0.07	0.25	ND	ND
TOTAL CBD			1.28	0.13
TOTAL THC			ND	ND

Totar CBD $=C B D+0.877^{*}$ CBDA and Total THC $=T H C+0.877^{*}$ THCA
The Measurement Uncertainty for Total THC at 0.3% is $+/-0.05 \%$ or in the range of $0.25 \%-0.35 \%$. each with 30 mg CBD. The approximate mass of ONE gummy bear is $4.25 \mathrm{~g}^{\text {Note } 4}$. Multiply the number of gummies by the mass of each gummy: 30 gummies $\mathbf{x} 4.25 \mathrm{~g}$ per gummy $=127.5 \mathrm{~g}$ Using the TOTAL CBD on the COA, multiply the total mass of the gummies by the concentration in mg / g : $127.5 \mathrm{~g} \times 7.06 \mathrm{mg} / \mathrm{g}=900 \mathrm{mg}$

CANNABINOID POTENCY							
ANALYTE	LOD $(\mathbf{m g} / \mathrm{g})$	LOQ $(\mathbf{m g} / \mathrm{g})$	Concentration $(\mathbf{m g} / \mathrm{g})$	Concentration $(\%)$			
CBD	0.07	0.25	7.06	0.71			
CBDA	0.07	0.25	ND	ND			
delta9-THC	0.07	0.25	ND	ND			
delta9-THCA	0.07	0.25	ND	ND			
CBG	0.07	0.25	ND	ND			
CBGA	0.07	0.25	ND	ND			
CBN	0.07	0.25	ND	ND			
CBC	0.07	0.25	ND	ND			
delta8-THC	0.07	0.25	ND	ND			
THCV	0.07	0.25		ND			
TOTAL CBD							
TOTAL THC							$\mathbf{N D}$

Total $C B D=C B D+0.877^{*} C B D A$ and Total $T H C=T H C+0.877^{*} T H C A$
The Measurement Uncertainty for Total THC at 0.3% is $+/-0.05 \%$ or in the range of $0.25 \%-0.35 \%$.

Note1,2: Because the DENSITY of OIL is approximately $0.9 \mathrm{mg} / \mathrm{mL}$, the mass of 30 mL of OIL is 27 g and the of mass of 15 mL of OIL is 13.5 g .
Note3: This is an approximate density for lotion. The densities of the various lotions and other topicals available may be different.
Note4: The mass of one gummy is widely variable across different gummy products available.

3154 State Street, Suite 2010, Blacksburg, VA 24060
540-682-3765 I info@ecctestlab.com www.ecctestlab.com

